
 Questioning the Role of Requirements Engineering in the Causes
of Safety-Critical Software Failures

C. W. Johnson†, C. M. Holloway*

† Dept. of Computing Science, University of Glasgow, Glasgow, G12 9QQ, johnson@dcs.gla.ac.uk
*NASA Langley Research Center, 100 NASA Road, Hampton VA 23681-2199, U.S.A, c.m.holloway@nasa.gov

Keywords: software failures, requirements engineering,
accident analysis, fallacious reasoning

Abstract

Many software failures stem from inadequate requirements
engineering. This view has been supported both by detailed
accident investigations and by a number of empirical studies;
however, such investigations can be misleading. It is often
difficult to distinguish between failures in requirements
engineering and problems elsewhere in the software
development lifecycle. Further pitfalls arise from the
assumption that inadequate requirements engineering is a
cause of all software related accidents for which the system
fails to meet its requirements. This paper identifies some of
the problems that have arisen from an undue focus on the role
of requirements engineering in the causes of major accidents.
The intention is to provoke further debate within the
emerging field of forensic software engineering.

1 Introduction

The last twenty years have seen a move away from the
‘perfective approach’ in accident investigation [1]. Rather
than blaming the operators who directly control complex
applications processes, there has been an increasing tendency
to identify the underlying latent and distal causes of adverse
events, such as poor safety management [2].

There have been similar changes in forensic software
engineering. Investigators have looked beyond particular
bugs to identify problems in the wider procurement and
management of large IT projects. In particular, there has
been a growing emphasis on requirements engineering in the
causes of adverse events. Leveson has argued that “most
software reliability models define failures in terms of
deviations from the software requirements specification; most
accidents involving software are due to errors in the software
requirements specification” [3].

Similarly, Ladkin’s analysis of the loss of Ariane 5 focuses on
requirements errors rather than programming failures: “the
program was written against Ariane 4 requirements; these
requirements were not transferred to the Ariane 5
requirements spec; the Ariane 5 requirements therefore did
not state the range requirement; the (implicit in Ariane 5)
range requirement was in conflict with the behavior of Ariane
5 (as in fact explicated in other Ariane 5 requirements);
requirements came up against behavior and the rocket was

destroyed. (It is not surprising that it was a requirements error
- over 90% of safety-critical systems failures are requirements
errors, according to a JPL study that has become folklore, as
well as Knight-Leveson, I believe.)” [4].

The following, partial list provides examples of the types of
problems that can arise during these early stages of
development:

1. lack of stakeholder involvement. The end-users who

arguably know most about day to day operation may not
be sufficiently consulted in the early stages of
development.

2. incorrect environmental assumptions. Neumann's
collection of computer related risks contains numerous
examples of variables that have fallen above or below
their anticipated ranges during 'normal' operation [5].

3. communications failures within development teams.
Software engineers must often rely upon information
provided by domain experts. Problems arise when these
specialists must communicate technical expertise to
people from other disciplines [6].

4. inadequate conflict management. Different stakeholders
can hold radically different views about the purpose and
priorities of application software. Such disagreements
can result in inconsistent or missing requirements if they
are not addressed.

5. lack of contextual detail. Requirements cannot simply be
gathered by conducting interviews or by analyzing
existing documentation. Observational techniques have
been used to provide first-hand insights into the potential
operational environment of complex, safety-critical
systems.

Statistical evidence has been gathered to demonstrate the
importance of requirements capture in the development of
safety-critical systems. For example, the UK Health and
Safety Executive’s ‘Out of Control’ project conducted a
detailed review of the causes of software failures in process
control applications. Requirements issues accounted for 40%
of the incidents, hardware failures for 26%, software bugs
11%, maintenance issues 6% and ‘system use’ around 17%
[7].

Also, Vinter [8] analysed more than 1,000 bug reports
produced by seven major embedded real-time systems
projects. He found results that are broadly similar to those
obtained by the UK HSE: 24% of the bug reports stemmed

from requirements issues, functionality 25%, structure 21%,
data 10%, implementation 5%, integration 5%, architecture
1%, testing 7%, other 5%. Within those bug reports that were
associated with requirements problems, Vinter argued that
48% could be classified as ‘misunderstandings’. Typically,
disagreement existed over the precise interpretation of a
particular requirement. 19% of the bug reports that stemmed
from requirements problems related to missing constraints.
27% related to requirements that had been changed. A further
6% were classified as ‘other’ issues. These statistical studies
have inspired some researchers to advocate a new vision of
safety-related requirements engineering. One such vision
would integrate pure safety requirements, safety-significant
requirements, system safety requirements, and safety
constraints in requirements repositories of requirements
specifications [9].

Nuseibeh and Easterbrook have argued that “the primary
measure of success of a software system is the degree to
which it meets the purpose for which it was intended.
Broadly speaking, software systems requirements engineering
(RE) is the process of discovering that purpose, by identifying
stakeholders and their needs, and documenting these in a
form that is amenable to analysis, communication, and
subsequent implementation” [10]. These observations
correctly emphasize the importance of requirements
engineering for the development of complex systems.

Problems arise when such arguments become distorted by a
form of causal asymmetry. Requirements engineering helps
to ensure that the software meets the primary measure of
success. However, this does not necessarily imply that
software failures are all caused by a failure in requirements
engineering. Unfortunately, many previous academic studies
and accident investigations seem to suffer from just this form
of hindsight bias [11]. To paraphrase: there must have been a
failure in requirements capture because engineers would have
fixed the problem if they had known about it.

There are further concerns about the statistical basis for the
studies that have emphasized the importance of requirements
engineering. For instance, Vinter’s study was based on
previous work by Beizer [12]. This earlier work had looked
at more than 16,000 bug reports in major software projects
funded by the US government. In contrast to Vinter, Beizer
only classified 8% of the problems as stemming from
requirements. It seems unlikely that the US government is so
much better at requirements analysis than the commercial
project teams investigated by Vinter. Instead, the difference
in results can be explained in terms of the classification
systems that were used in these studies. Beizer relied on a
classification system with several dozen terms while Vinter
relied on only nine top level categories. The key point here is
that a superficial analysis of software engineering failures
will often focus on requirements failure, because of the
persuasive nature of the hindsight bias mentioned above. In
contrast, more detailed studies in forensic engineering tend to
focus on a host of organisational and technical issues that are
less easily classified.

2. Case Study

Arguments about the role of requirements engineering in the
failure of safety-critical systems can be illustrated by a recent
incident involving Boeing Electronic Engine Controllers
(EEC) [13]. These units control engine start sequencing,
power requirements, operating temperature, turbine speeds,
fuel flow, engine monitoring, and automatic relight, among
other functions. They also provide fault detection using
EEPROMs and log error codes until they are intentionally
cleared during maintenance.

The particular incident in which we are interested was
triggered when the fuel flow to the right engine dropped to
zero approximately 3.5 minutes after full power was applied
for take-off during a commercial flight. This resulted in an in-
flight shutdown for the engine. The crew received no
warning before the failure, but they were able to successfully
land with only one engine. Figure 1 provides a simple Events
and Causal Factors diagram for the incident. Rectangles
denote individual events, ellipses represent causal factors that
make those events more likely.

Subsequent investigations found that a failure in the right
engine EEC removed electrical power from an engine fuel-
control metering valve. This valve was spring loaded to
return to the closed position when power was removed. The
EEC removed the electrical signal from the fuel valve,
because it had detected failures on both of its redundant
channels. Channel A suffered from a bit-flip error within the
memory section of the input/output microprocessor. Unused
memory sections should have been initialized using a positive
charge to represent binary 1. However, some areas became
negatively charged and were interpreted as binary zero,
resulting in checksum failures.

Further vibratory testing of the EEC indicated fracturing of
solder joints at five resistors on the analog interface module
circuit board of Channel B. It was discovered that the EECs
in other fleets had also suffered from these problems. At first
sight, this incident can be interpreted as a requirements
problem similar to those identified in the second item of the
list that opened this paper. The programmers made incorrect
assumptions about the reliability of the operating environment
for their software. The decision to initialize memory section
of the input/output microprocessor using positive charge
binary 1, left the system susceptible to in-flight failures if
areas became negatively charged by individual bit-flip errors.
This was considered to be a more likely failure mode than a
bit-flip from negative 0 to positive 1. In consequence, two
months after the incident, the engine manufacturers issued a
Service Bulletin which gave instructions for a software
modification of the processor communication's modules to
change the fill pattern of the unused areas of the EEPROM
memory from hexadecimal binary 1s to binary 0s, thereby
reducing the possibility of checksum failures.

One problem with this particular analysis is the difficulty of
determining whether particular problems stem from

Right engine uncommanded in-flight shut-down.

Crew observe R ENG RPM LO alert.

Crew observe RH SYS FAIL advisory.

Crew action ENGINE SHUTDOWN
INFLIGHT checklist.

Crew complete single engine landing.

Operator maintenance
interrogate multifunction

control display unit (MCDU)

Operator maintenance carry
out right engine EEC fault

review check

Operator maintenance
conduct return to

service check.

Operator maintenance
conduct dry monitoring

run.

Operator maintenance
conduct engine idle

run.

Operator maintenance fails to find faults

Operator maintenance carries out further
EEC fault review

Several fault codes noted in EEC
memory associated with Full Authority

Digitel Engine Control (FADEC) system
fault and EEC Box Fault.

EEC and Fuel Monitoring Unit removed
for further testing.

EEC and FMU replaced.

Aircraft returns to service
after ground tests.

Flight takes off, Launceston airport.

180s after full power for takeoff right engine fuel
flow drops to zero.

Confers with engine
manufacturer.

Climb passes 7,000ft ASL.

Figure 1: Overview of the Electronic Engine Controller (EEC) Failure

inadequate requirements engineering, or from other stages of
the software lifecycle. For example, it might be argued that
the initialization conditions for the EEC input/output
microprocessor should only be considered during detailed
specification and design, and not during requirements
development Equally, however, it might be argued that the
use of positive 1 encoding violated an earlier requirement to
ensure that the system was resilient to bit-flip errors. Hence,
the problem can be traced back to the verification and testing
of a design against high-level requirements. We shall return
to this issue in the discussion at the end of the paper.

Hindsight bias occurs when software engineers automatically
assume that there has been a failure in requirements
engineering simply because an accident has occurred. This is
dangerous if it obscures deeper engineering problems. For
example, ‘band aid’ software can be applied to fix new
requirements rather than address more fundamental
engineering issues.

In the accident we are considering, investigators may focus
on changes to version 7.0 of the EEC software rather than on
problems in the printed circuit boards, which are illustrated in
Figure 2. This diagram extends the ECF modeling to identify
more detailed causes of the EEC failure.

Our earlier discussion focused on the checksum failures that
were associated with Channel A, but did not address the
failure of Channel B, which was also necessary in order to
cause a failure in the dual redundant EEC for the right engine.
The ECF diagram denotes that Channel B may have failed
from differential thermal expansion between the printed
circuit board and a series of interface resistors. Over time,
these failures contributed to ‘health-lane degradation’ which
ultimately resulted in Channel B being shut down. As can be
seen, the ‘health lane degradation’ on both Channel A and
Channel B were difficult to detect because intermittent
failures did not always result in maintenance warnings. The
Australian Transport Safety Board went on to describe how

Right Engine EEC removes power from
engine fuel control monitoring valve

Engine fuel control monitoring valve spring
loaded into closed position.

Right engine is starved of fuel.

Right engine uncommanded in-flight shut-down.

Dual channel failure of right engine EEC

Assump: Channel B fails from
intermittent loss of signal from

solder joint fractures to resistors of
analogue interface module circuit

board

Assump: healthlane degradation
causes Channel B to shut down.

“EEPROM input/output
microprocessor is configured with
positively charged hexadecimal

binary 1s occupying unused memory
sections”.

Some areas of unused memory
section of input/output

microprocessor in Channel A
EEPROM become negatively

charged with binary zeros.

Assump: checksum failures cause
healthlane degradation and Channel A

shuts down.

Thermal cycle
induced stress due to differential

thermal expansion between printed
circuit board and resistor.

Same resistor
package used on both channels

affects up to 7 per channel with any
of 5 contributing to failure of one

EEC.

Intermittent
healthlane degradations did not

automatically trigger maintenance
warnings.

Figure 2: Detailed Analysis of the Electronic Engine Controller (EEC) Failure

“the engine manufacturer further advised that they will be
incorporating a software upgrade of the EEC to version 7.0,
which will include an improvement to remove the possibility
for certain intermittent failures to trigger a 'health lane'
degradation without triggering the corresponding
maintenance message”.

Figure 2 illustrates further design issues that were not so
prominently discussed in the official incident report and
which might also easily be overlooked by a precipitate focus
on requirements engineering issues. Both of the redundant
Channels were designed using similar resistor packs. In
consequence, both were vulnerable to the same thermal
cycles. This more detailed analysis points to more complex
causes in the incident than the initial failure to identify
appropriate initialization conditions for the EEPROM
input/output microprocessor software. It also suggests
continuing vulnerabilities from a lack of diversity even after
the proposed software upgrades.

Figure 3 provides an overview of a second incident, involving
the same aircraft. Approximately three weeks after the right

engine EEC failure, there was an in-flight loss of power to the
left engine. The causes appear to have been very similar.

The associated EEC was also running version 6.1 of the
software. Subsequent inspections revealed fractures to the
solder joints on the resistors of both redundant channels.
Maintenance teams were able to identify an EEC fault code in
the multifunction control display unit (MCDU) memory.

As in the previous incident, the crew landed the aircraft
without any injury. Six days after this second incident, there
was a further in-flight loss of power reported from a US
aircrew. Again, there were fractures in the solder joints
across resistors for both of the channels.

This case study initially focused on requirements problems
associated with the initialisation of the EEC’s EEPROM
input/output microprocessor. Subsequently we identified
software problems in logging intermittent failures during
health lane monitoring. Although these problems can be
linked back to the requirements analysis for the EEC
application, Figures 2 and 3 show that they must be placed in

4/10/2002: Crew complete single
engine landing.

4/8/2002: Right Engine EEC installed, software v6.1 (most recent).

Right Engine EEC
accumulates 426.7 hours

flying time, 393 cycles.

30/10/2002: B717-200 sustains in-
flight shutdown of right engine.

B717-200 EEC
accumulates 6,700 hours

flying time.

Fracture of solder joints at
5 resistors on Channel A of

analogue interface unit.

Fracture of solder joints at
10 resistors on Channel B
of analogue interface unit.

Dual channel failure of right engine
electronic engine controller (EEC)

Dual channel failure of right engine
electronic engine controller (EEC)

Aircraft returns to service after
ground tests.

24/10/2002: Left engine spools down

24/10/2002: Crew complete single engine landing.

Fracture of solder joints at
6 resistors on Channel A of

analogue interface unit.

Fracture of solder joints at
4 resistors on Channel A of

analogue interface unit.

24/10/2002 Possible dual channel
failure of LEFT engine electronic

engine controller (EEC)

LEFT Engine EEC
accumulates 4,686.4

hours flying time, 4,311
cycles.

LEFT
Engine EEC running

software v6.1.

Assump: Thermal cycle
induced stress due to differential

thermal expansion between printed
circuit board and resistor.

Assump: Thermal cycle
induced stress due to differential

thermal expansion between printed
circuit board and resistor.

Assump: Thermal cycle
induced stress due to differential

thermal expansion between printed
circuit board and resistor.

Maintenance notice a fault code relating
to EEC logged on MCDU memory.

EEC and FMU replaced

Aircraft returns to service after ground tests.

Figure 3: Similar Incidents of Electronic Engine Controller

the context of several wider engineering issues. In particular,
any focus on software requirements issues must be balanced
against a lack of diversity in the resistor arrays of both
channels and the configuration of the PCBs that made then
susceptible to thermal cycles.

The key point here is not to deny that there were requirements
problems in this case study. In contrast, the intention is to
warn against the myopia that occasionally affects software
engineering accounts of major failures [3]. For example,
there are well-developed research communities in the field of
requirements engineering. This increases the likelihood that

research projects will focus on these aspects of adverse events
[11]. However, in this case study, equal attention should be
paid to the wider engineering issues mention above. It is also
important to consider the role of software engineering in
monitoring the error codes produced by the EEC and logged
in MCDU memory. It seems remarkable that several almost
identical failures were logged within weeks of the first EEC
failure. This suggests an increased awareness of the possible
failure modes given successive updates from the
manufacturer. There have been a number of recent research
and development initiatives to support pattern recognition and
self-diagnosis of potential failure modes from on-board

systems [14]. However, this work is largely driven by
aviation specialists and cannot easily be compared to the mass
of recent projects in the more general field of requirements
engineering.

Figure 4 reinforces many of the points made in previous
paragraphs by annotating an ECF with specific actions taken
by the manufacturer in response to this incident. Shaded

rectangles denote interventions that address diverse causes
ranging from the initialization requirements for the EEPROM
input/output microprocessor through to the software alerts for
health lane degradation to ‘work arounds’ for the PCB design
that left resistor arrays susceptible to thermal stress. As can
be seen, these recommendations and notices did not simply
focus on the software requirements issues but covered diverse
aspects of the engineering of the EEC systems.

Right Engine EEC removes power
from engine fuel control monitoring

valve

Flight takes off, Launceston airport.

Climb passes 7,000ft ASL.

Engine fuel control monitoring valve
spring loaded into closed position.

Right engine is starved of fuel.

Right engine uncommanded in-flight
shut-down.

Dual channel failure of right engine
electronic engine controller (EEC)

Assump: Channel B fails
from intermittent loss of
signal from solder joint
fractures to resistors of

analogue interface
module circuit board

Assump: healthlane
degradation causes

Channel B to shut down.

“EEPROM input/output
microprocessor is configured with
positively charged hexadecimal

binary 1s occupying unused memory
sections”.

Some areas of unused memory
section of input/output

microprocessor in Channel A
EEPROM become negatively

charged with binary zeros.

Assump: checksum failures
cause healthlane degradation
and Channel A shuts down.

Thermal cycle
induced stress due to differential

thermal expansion between printed
circuit board and resistor.

Same resistor
pack used on both

channels.

20/1/2003: Manufacturer
service bulletin SB-BR700-
73-900316 fleet operators

told of inspections and
modifications to improve EEC
reliability, 10 changes to be
made at earliest opportunity

without affecting flight
schedule. Requires EEC
return to manufacturer.

20/12/2002:
Manufacturer service

bulletin SB-BR700-73-
101401 instructions to

reduce stress on
resistors by attaching

them to analogue
interface module circuit
board and connect them
to original solder pad by
flying leads. Compliance
at next shop visit for EEC
repair or by manufacturer

(not mandatory).

27/11/2002: Manufacturer issues
update on testing of Fuel Metering

Unit and EEC

20/12/2002:
Manufacturer notice on

in-flight shutdown &
engine restart

procedures. Advises of
harness installation

procedures and review of
fault codes and advises
interrogation of MCDU
every 50 flight hours.

Manufacturer incorporates
software upgrade for EEC v7.0,
removes “possibility of certain
intermittent failures to trigger a

‘health lane’ degradation without
triggering the corresponding

maintenance message”.

17/1/2003: Manufacturer
service bulletin SB-BR700-

73-101404 software
modification for processors
communications modules
(A3/A4) to change pattern

of unused areas of
EEPROM from

hexadecimal binary 1’s to
0’s reducing possibility of

checksum failure.
Compliance on next EEC
repair or by manufacturer

(not mandatory).

25/10/2002: Manufacturer issues
warning over in-flight shutdown event
and lists warning codes witnessed.

Figure 4: Safety Management Perspective on Electronic Engine Controller (EEC) Failure

Similar comments can be made about the regulatory
organizations. Immediately following the first incident, the
relevant civil aviation authority directed the aircraft operator
to review all fault codes at the end of each day for the
‘occurrence aircraft’ until further notice. This requirement
was later modified to include an MCDU review at every
airport for which there was engineering support. This incident
is unusual because one might have expected the
recommended review to have identified precursors to the EEC
fault codes that were logged when the second incident
occurred (see figure 3). However, the official report avoids
any comment about the way in which a second failure
occurred even though the civil aviation authority had taken
steps to avoid such a recurrence through monitoring the
software logs. Following the failure of the left engine,
additional requirements were developed to ensure a review of
fault codes at the end of each day's flying for all operator
aircraft. They also required a review of fault codes after each
sector where engineering support was available to include all
of the operator’s aircraft of the same type involved in this
incident.

In addition to the steps taken by the manufacturer and the
regulator, the aircraft operator also reacted to this incident in
several different ways. They required that the MCDU was
interrogated for EEC faults after each flight into a manned
port. Recurring faults would result in the EEC being replaced.
All of the associated codes and corrective actions were to be
reported to the national civil aviation authority. The EEC
PCB’s were modified to reduce the problems created by
thermal cycling of the resistors across all of the fleet.
Following any modification, the MCDU interrogation was to
continue after every flight into an airport with a service
engineering capability for two weeks. This period would then
be extended to regular service intervals once the reliability of
the modifications had been established. All EECs returned to
the manufacturer were to be upgraded, using the software
modifications mentioned before. The entire fleet was
modified by the first quarter of 2004.

The key point here is to illustrate the diverse approaches that
were used to address the many different causes of this
incident. As noted, any focus on requirements issues must
not distract from the wider engineering issues that concern the
manufacturer, operator and regulator. These
recommendations illustrate another critical point; none of
them deal directly with the problems of requirements
engineering. It is remarkable how few accident reports ever
deal directly with development issues [11].

This can be interpreted in one of two ways. Perhaps, the lack
of recommendations dealing with requirements engineering
illustrates an important omission on the part of investigatory
agencies that are otherwise missing important opportunities to
prevent similar failures from affecting future products that are
engineered using the same processes. Alternatively, such
omissions might reflect the pragmatic view that it is
impossible to develop perfect requirements and that it is more
profitable to focus on ensuring the immediate safety of
existing systems without imposing undue constraints on the

processes that might used to guide the development of future
systems.

3. Discussion: Biases in Forensic Software
Engineering

The previous case illustrates the complexity of engineering
failures, which can often be obscured by simple prima facea
claims that accidents stem from inadequate requirements
gathering. Forensic software engineering is also subject to
other forms of bias. For instance, many researchers have a
vested interest in promoting particular techniques. Hence, it
is possible to read articles that are based on counter factual
propositions of the form ‘accident A would have been
avoided if technique X or Y had been avoided’. Of course,
such arguments are non-truth functional. The accident did
occur and hence we must make a judgment based on
suppositions about what might have happened if different
requirements engineering practices had been followed.

For the case study, it is difficult to know what evidence could
be recruited to demonstrate that the EEC fault code reporting
mechanisms would have been improved if the original units
had been developed using formal methods or any other
approach. Hansen and Gullesen illustrate one approach when
they use UML to identify faults that were deliberately
injected into a dual channel architecture similar to that
described in our case study [15]. However, demonstrating
that a failure mode can be detected using a requirements
engineering technique is quite different from showing that it
would have identified the problems that lead to particular
accidents and incidents. In other words, such demonstrations
often suffer from the hindsight bias mentioned in the previous
paragraph.

Bias can be interpreted as influences that prevent objective
consideration of an issue or situation. These influences can
lead to or be reinforced by the use of logical fallacies to
support the findings of accident investigations. In particular,
they often seem to be used to justify the identification of
requirements failure in the aftermath of software related
incidents and accidents. For example, the post hoc ergo
propter hoc fallacy occurs when arguments move from a
premise of the form "A preceded B" to a conclusion of the
form "A caused B". Requirements engineering takes place in
the earliest stages of many development projects. Hence,
analysts may incorrectly assume that by tracing the causes of
an adverse event into these initial stages, they are also tracing
the underlying, systemic causes of an accident or incident.
Caspers Jones recognised this when he argued that the root
causes of software failure should be traced back to faulty
management and quality control practices rather than to
requirements processes [16]. It is very difficult, if not
impossible, to capture fully all of the competing requirements
that software must continue to satisfy during its lifetime,
hence we should focus more on the processes that are
intended to trap key requirements problems during a software
project. In this view, our case study incident can be viewed
as a success since redundancy prevented loss of life, and the

problems with EEC fault code reporting were corrected once
the issue had been identified.

Further fallacies can be identified in the reasoning that is used
to identify requirements problems in the causes of incidents
and accidents. For example argumentum ad ignorantium
occurs when a proposition is claimed to be true because it has
not been shown to be false, or vice versa. In our case study,
we might assume that poor requirements analysis led to the
lack of prominent error code reporting for the EEC, because
the accident report does not present evidence in support of the
techniques that were used by the manufacturer.

We have already met several other fallacies in the opening
sections of this paper. For instance, dicto simpliciter relies on
sweeping generalizations of the form ‘90% of all accidents
are due to requirements failure’. Similarly, arguments ad
verecundiam are based on appeals to authority. For instance,
where requirements problems are diagnosed by reference to
previous work that is itself not firmly based on empirical
observations but on other forms of fallacy, mentioned above.

4 Caveats and Criticisms

A number of important caveats may be raised about the
analysis in this paper. In particular, we have conducted a
relatively detailed analysis of a single accident. This is a
deliberate decision. The intention has been to expose the
complex interactions between software requirements
engineering and problems in the underlying avionics. Our
aim has been deliberately to avoid the high-level statistical
surveys that focus on a small number of software-specific
problems. However, we would argue that the EEC case
study is typical of a much larger class of accidents or
incidents. For example, the Ariane 5 incident that was
mentioned in the opening sections of this paper stemmed
from a very similar interaction between software
requirements and the underlying hardware.

There are further differences between our work and the earlier
studies of both Beizer and Vintner. These surveys focused
more narrowly on the importance of software lifecycle
processes on bug reports. In contrast, this paper focuses on
the wider causes of accidents and incidents that partly stem
from software related problems. These differences hint at a
more general proposition. The statistical work, especially the
studies by Vinter, demonstrates the importance of
requirements failure as a source of bugs that are documented
in project reports. However, our analysis of the interplay
between requirements failure and other problems in the wider
engineering of complex systems suggests that greater
attention should be paid to the interaction between these
issues as a cause of major failures.

Nuseibeh and Easterbrook have argued that “the demand for
better, faster, and more usable software systems will continue,
and requirements engineering will therefore continue to
evolve in order to deal with different development scenarios.
We believe that effective RE will continue to play a key role

in determining the success or failure of projects, and in
determining the quality of systems that are delivered”. Our
work confirms this analysis but we would go on to stress two
points of difference. Firstly, it seems unlikely that we will
ever be able to entirely eliminate the broad class of problems
that are being ascribed to failures in requirements
engineering. Secondly, if this is the case we must urgently
look at the ways in which such failures might exhibit
themselves within the engineering of complex systems.

5 Concluding Remarks

A large number of accident investigations have identified the
role that inadequate requirements engineering plays in the
failure of safety-critical software [11]. These findings have
been supported by several large scale surveys of bug reports
in safety-critical projects. However, such findings may be
misleading. It is difficult to distinguish between failures in
requirements engineering and, for instance, inadequate testing
or poor design techniques. In consequence, statistical surveys
are often undermined by poor inter-analyst reliability.

Further pitfalls arise from the assumption that inadequate
requirements engineering is a cause of all software related
accidents for which the system fails to meet its requirements.
There is a danger of hindsight bias; it is easy to identify
problems after an accident has occurred. However, it can be
far harder to establish that an accident might have been
avoided if alternate requirements engineering processes had
been employed.

This paper has used a case study, focussing on the failure of
redundant dual channel EEC, to illustrate these arguments.
This incident stemmed in part from software engineering
problems, in particular the use of positive binary-1
initialisation for the input/output microprocessor EEPROM
created potential vulnerabilities. These issues can be traced
back to relatively early stages in the development process and
can be ascribed to requirements engineering failures, for
example in identifying likely environmental factors that
would lead to bit-flip errors with such positive encodings.
However, a more sustained analysis of the case study helped
to show the more complex causes of the incident. Many of
these involved hardware issues and have been resolved,
including the vulnerability of the PCBs to thermal cycles.
Others relate to design factors, such as the lack of diversity in
redundant channels.

Our intention has not been to deny the importance of
requirements engineering as a cause of software related
failures in safety-critical systems. In contrast, the intention
has been to provoke further debate within the emerging field
of forensic software engineering. In particular, we would
urge greater caution in identifying requirements failure as a
‘catch-all’ cause of adverse events. We would also welcome
insights into why so few accident investigation agencies make
recommendations about appropriate requirements engineering
techniques when so many researchers have focused on these
‘causes’.

Acknowledgements

We thank the reviewers and our colleagues for the
constructive comments and criticisms made on earlier drafts
of this paper.

References

[1] C.W. Johnson and C.M. Holloway, A Technique for
Showing Causal Arguments in Accident Reports.
Proceedings of the 23rd International System Safety
Conference, 22-26 August 2005, San Diego, California,
International Systems Safety Society, Unionville, VA,
USA, 2005.

[2] J. Reason, Human Error, Cambridge University Press,

UK, 1990.

[3] N. Leveson, Software Safety: Why, What, and How, ACM

Computing Surveys, Vol. 18, No. 2, June 1986, pp. 25-69.

[4] P.Ladkin, The Ariane 5 Accident: A Programming

Problem? Technical Report, RVS-J-98-02, Bielefeld
University, Faculty of Technology, 1998.

[5] Peter G. Neumann, editor, Risks-Forum Digest, available

at http://groups.google.com/group/comp.risks [visited
March 27, 2006].

[6] Kimberly S. Hanks, John C. Knight, Improving

Communication of Critical Domain Knowledge in High-
Consequence Software Development: an Empirical Study,
Proceedings of the 21st International System Safety
Conference (ISSC'03), Ottawa, Canada, August, 2003.

[7] UK Health and Safety Executive, Out of Control: Why

control systems go wrong and how to prevent failure.
Health and Safety Guidance report 238, Bootle, UK, 2003.

[8] O. Vinter, From Problem Reports to Better Products. In

L. Mathiassen, J. Pries-Heje and O. Ngwenyama (eds.),
Improving Software Organizations: From Principles to
Practice, Chapter 8, Addison-Wesley, 2002.

[9] D.G. Firesmith, Engineering safety-related requirements

for software-intensive systems, 27th Int. Conference on
Software Engineering, St. Louis, MO, 720–721, 2005.

[10] B. Nuseibeh and S. Easterbrook, Requirements

Engineering: A Roadmap. In A. C. W. Finkelstein (ed),
The Future of Software Engineering, 22nd International
Conference on Software Engineering, IEEE Computer
Society Press, 2000.

[11] C.W. Johnson, A Handbook of Accident and Incident

Reporting, Glasgow University Press, U.K., 2002.

[12] B. Beizer, Software Testing Techniques. Second

edition.Van Nostrand Reinhold, New York, 1990.

[13] Australian Transportation Safety Board, Serious Incident

Ref. 200204444, 11 km N Launceston, (VOR), 04-Oct-02,
2003.

[14] J. Austin, R. Davis, M. Fletcher, T. Jackson, M. Jessop,

B. Liang and A. Pasley, DAME: Searching Large Data
Sets Within a Grid-Enabled Engineering Application.
Proceedings of the IEEE - Special Issue on Grid
Computing, (93)3:496-509, March 2005.

[15] K.T. Hansen and I. Gullesen, Utilizing UML and

Patterns for Safety Critical Systems, 5th Int. Conference on
UML and its Applications, Dresden, Germany, 2002.

[16] C. Jones, Patterns of Large Software Systems: Failure

and Success, IEEE Computer, Vol.28, Issue 3, March
1995.

http://www.uni-bielefeld.de/
http://www.uni-bielefeld.de/
http://www.techfak.uni-bielefeld.de/

